3,143 research outputs found

    Concentration of atomic hydrogen diffused into silicon in the temperature range 900–1300 °C

    Get PDF
    Boron-doped Czochralski silicon samples with [B]~1017 cm−3 have been heated at various temperatures in the range 800–1300 °C in an atmosphere of hydrogen and then quenched. The concentration of [H-B] pairs was measured by infrared localized vibrational mode spectroscopy. It was concluded that the solubility of atomic hydrogen is greater than [Hs] = 5.6 × 1018 exp( − 0.95 eV/kT)cm−3 at the temperatures investigated

    Aids to Navigation on the Hudson Bay Route

    Get PDF

    Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    Get PDF
    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans

    The Chandra X-Ray Point-Source Catalog in The Deep2 Galaxy Redshift Survey Fields

    Get PDF
    We present the X-ray point-source catalog produced from the Chandra Advanced CCD Imaging Spectrometer (ACIS-I) observations of the combined \sim3.2 deg2 DEEP2 (XDEEP2) survey fields, which consist of four ~0.7-1.1 deg2 fields. The combined total exposures across all four XDEEP2 fields range from ~10ks-1.1Ms. We detect X-ray point-sources in both the individual ACIS-I observations and the overlapping regions in the merged (stacked) images. We find a total of 2976 unique X-ray sources within the survey area with an expected false-source contamination of ~30 sources (~1%). We present the combined logN-logS distribution of sources detected across the XDEEP2 survey fields and find good agreement with the Extended Chandra Deep Field and Chandra-COSMOS fields to f_{X,0.5-2keV}\sim2x10^{-16} erg/cm^2/s. Given the large survey area of XDEEP2, we additionally place relatively strong constraints on the logN-logS distribution at high fluxes (f_{X,0.5-2keV}\sim3x10^{-14} erg/cm^2/s), and find a small systematic offset (a factor ~1.5) towards lower source numbers in this regime, when compared to smaller area surveys. The number counts observed in XDEEP2 are in close agreement with those predicted by X-ray background synthesis models. Additionally, we present a Bayesian-style method for associating the X-ray sources with optical photometric counterparts in the DEEP2 catalog (complete to R_AB \u3c 25.2) and find that 2126 (~71.4\pm2.8%) of the 2976 X-ray sources presented here have a secure optical counterpart with a \u3c6% contamination fraction. We provide the DEEP2 optical source properties (e.g., magnitude, redshift) as part of the X-ray-optical counterpart catalog

    Tracing the Evolution of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr of Cosmic Time

    Get PDF
    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 \u3c z \u3c 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution

    Anatomical and molecular properties of long descending propriospinal neurons in mice

    Get PDF
    Long descending propriospinal neurons (LDPNs) are interneurons that form direct connections between cervical and lumbar spinal circuits. LDPNs are involved in interlimb coordination and are important mediators of functional recovery after spinal cord injury (SCI). Much of what we know about LDPNs comes from a range of species, however, the increased use of transgenic mouse lines to better define neuronal populations calls for a more complete characterisation of LDPNs in mice. In this study, we examined the cell body location, inhibitory neurotransmitter phenotype, developmental provenance, morphology and synaptic inputs of mouse LDPNs throughout the cervical and upper thoracic spinal cord. LDPNs were retrogradely labelled from the lumbar spinal cord to map cell body locations throughout the cervical and upper thoracic segments. Ipsilateral LDPNs were distributed throughout the dorsal, intermediate and ventral grey matter as well as the lateral spinal nucleus and lateral cervical nucleus. In contrast, contralateral LDPNs were more densely concentrated in the ventromedial grey matter. Retrograde labelling in GlyT2GFP and GAD67GFP mice showed the majority of inhibitory LDPNs project either ipsilaterally or adjacent to the midline. Additionally, we used several transgenic mouse lines to define the developmental provenance of LDPNs and found that V2b positive neurons form a subset of ipsilaterally projecting LDPNs. Finally, a population of Neurobiotin (NB) labelled LDPNs were assessed in detail to examine morphology and plot the spatial distribution of contacts from a variety of neurochemically distinct axon terminals. These results provide important baseline data in mice for future work on their role in locomotion and recovery from SCI
    corecore